Nel 1900 Ernest Rutherford scoprì un gas prodotto dal decadimento del torio e lo identificò come un nuovo gas nobile; Friedrich E. Dorn nel 1900 scoprì un gas prodotto dal decadimento del radio; nel 1903 André L. Debierne scoprì un gas prodotto dal decadimento dell'attinio.

Questi gas sono gli isotopi naturali del radon, rispettivamente ²²⁰Rn, ²²²Rn e ²¹⁹Rn.

	simbolo	numero atomico	peso atomico	raggio atomico/Á	configurazione elettronica	elettronegatività (Pauling)
Ī	Rn	86		2,20	$[Xe]4f^{14}5d^{10}6s^{2}6p^{6}$	

CONTENUTI							
crosta terrestre/ppm	oceani/g m ⁻³	corpo umano (70 kg)					
4×10^{-13}	6×10^{-16}						

Esistono solo isotopi radioattivi a vita breve; il più importante è 222 Rn ($m_a = 222,018$ u; $t_{1/2} = 3,8$ giorni; dec: α), naturale, prodotto dal decadimento di 226 Ra (a sua volta prodotto da 238 U).

SPECIE EL EMENTARE

OI LOIL LLLINENTANL									
nome	formula	stato di aggregazione	temperatura di fusione/C°	temperatura di ebollizione/C°	legame				
radon	Rn	gas	-7 1	-62					
Isolato da William Ramsay e Robert Whytlaw-Gray nel 1908 dal radio.									
Specie monoatomica.									

PROPRIETÀ CHIMICHE GENERALI

◆ Uniche specie chimiche note: Rn⁺, RnF₂, RnF⁺.

produzione: per usi pratici è prodotto "in loco" da campioni di radio (226 Ra \rightarrow 222 Rn + α ; da 100 g di Ra si ottengono \sim 0,01 g di Rn al giorno).

usi: per radioterapie.

importanza biologica: nessuna.

pericolosità: forte radioattività. Le rocce contenenti Ra (pozzolane, tufi, e alcuni graniti) e alcune sorgenti naturali emettono continuamente Rn nell'ambiente circostante; Rn può quindi essere presente in quantità maggiori della media nell'atmosfera di miniere e di edifici costruiti con i materiali sopra citati.

note e curiosità:

- La IUPAC nel Report of the International Committee on Chemical Elements del 1923, (*J. Am. Chem. Soc.*, **45**, 867-874) attribuì i nomi "radon", "action" (da attinio) e "thoron" (da torio) ai tre isotopi naturali; il primo divenne successivamente il nome dell'elemento.
- M. Curie aveva osservato nel 1899 la radioattività del radon, ma non l'aveva attribuita ad un nuovo elemento.
- Il radon è considerato il maggior responsabile della radioattività naturale.
- L'atmosfera terrestre contiene mediamente 10^{-15} ppm (in volume) di radon.
- Secondo alcuni scienziati, un aumento dell'emissione di Rn dalle rocce è un indice di prossima attività sismica.