
DISPROSIO (dysprosium)

dal greco δυσπρόσίτος = di difficile accesso

Scoperto da Paul-Émile Lecoq de Boisbaudran nel 1886 come impurezza dell'ossido holmia isolato da Per T. Cleve.

simbolo		numero	peso raggio		configurazione	elettronegatività	
		atomico	atomico atomico/Á		elettronica	(Pauling)	
	Dy	66	162,500	2,31	[Xe] $]4f^{10}6s^2$	1,22	

CONTENUTI							
crosta terrestre/ppm	oceani/g m ⁻³	corpo umano (70 kg)					
5	9×10^{-7}						

COMPOSIZIONE ISOTOPICA NATURALE							
Α	156	158	160	161	162	163	164
%	0,06	0,10	2,33	18,89	25,48	24,90	28,26
<i>t</i> _{1/2} /anni	stabile						

SPECIE ELEMENTARE

0: 10:1 11:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1							
nome	formula	stato di aggregazione	struttura cristallina	temperatura di fusione/C°	temperatura di ebollizione/C°	legame	
disprosio	Dy	solido	α-Dy: <i>hP</i>	1412	2567	metallico	
Preparato (misto a KCl) da Wilhelm Klemm e Heinrich Bommer nel 1937 (DyCl₃ + 3 K → Dy + 3 KCl)							
Metallo argenteo brillante, tenero. E' ossidato lentamente dall'aria e velocemente dagli acidi.							

Esistono alcune forme allotropiche metalliche con differenti strutture cristalline.

PROPRIETÀ CHIMICHE GENERALI

- ♦ A parte il complesso Cs₃Dy^{IV}F₇ ed alcuni composti di Dy^{II}, la chimica è quella dello ione Dy³⁺ (giallo).
- \bullet Gli ioni trivalenti dei lantanoidi, Ln^{3+} , formano numerosi complessi con alto numero di coordinazione, in genere 8 o 9. Gli ioni idratati sono prevalentemente del tipo $[Ln(H_2O)_9]^{3+}$; i complessi più stabili sono quelli con leganti che hanno ossigeno come atomo donatore, specialmente se chelanti come $[Ln(NO_3)_5]^{2-}$, $[Ln(L-L)_4]^-$, (L-L=ione β-dichetonato), $[Ln(EDTA)(H_2O)_3]^-$ (EDTA = ione etilendiamminateraacetato). I composti organometallici dei lantanoidi sono prevalentemente quelli con ciclopentadienile (e.g., $Ln(C_5H_5)_3$).

s.o.	specie fondamentali	proprietà acido-base	prop. redox pH = 0	prop. redox pH = 14	alogenuri	
+3	$\mathrm{Dy_2O_3}$ $\mathrm{Dy(OH)_3}$ Dy^{3+}	base debole	inattivo	inattivo	DyX_3	
0	Dy		rid forte	rid forte		
Altri alogenuri: DyCl ₂ , DyBr ₂ , I						

produzione: Ln₂O₃ (Ln = lantanoide): 1×10⁸ kg/anno, da bastnäsite (LnCO₃F) e monazite (LnPO₄).

usi: Dy in leghe per magneti (immagazzinamento di dati). La sua luminescenza è usata in dosimetri di radiazioni ionizzanti.

¹⁶⁵Dy ($t_{1/2}$ = 2,3 ore, dec: β) è usato per radioterapia.

importanza biologica: nessuna.

pericolosità: elemento leggermente tossico per ingestione.

• Il nome dell'elemento è stato proposto da P.-É. Lecoq de Boisbaudran.