
CERIO (cerium)

dal pianetino Ceres scoperto nel 1801

Scoperto nel 1803 da Martin H. Klaproth e, indipendentemente, da Jöns J. Berzelius e Wilhelm von Hisinger nel minerale cerite.

simbolo	numero	peso	raggio	configurazione	elettronegatività
	atomico	atomico	atomico/Å	elettronica	(Pauling)
Ce	58	140,116	2,42	$[Xe]4f^15d^16s^2$	1,12

CONTENUTI		
crosta terrestre/ppm	67	
oceani/g m ⁻³	1×10 ⁻⁶	
corpo umano (70 kg)		

COMPOSIZIONE ISOTOPICA NATURALE					
A	136	138	140	142	
%	0,19	0,25	88,45	11,11	
<i>t</i> _{1/2} /anni	stabile	stabile	stabile	stabile	

SPECIE ELEMENTARE

nome	formula	stato di aggregazione	struttura cristallina	temperatura di fusione/C°	temperatura di ebollizione/C°	legame
cerio	Ce	solido	γ-Ce: <i>cF</i>	799	3443	metallico

Preparato nel 1875 da William F. Hillebrand e Thomas Norton per elettrolisi di CeCl₃

Metallo grigio ferro, malleabile. E' il lantanoide più reattivo: è ossidato a Ce^{III} dall'aria umida, da acidi e alcali; brucia all'aria formando $Ce^{IV}O_2$; è piroforico se finemente suddiviso.

Esistono alcune forme allotropiche metalliche con differenti strutture cristalline.

PROPRIETÀ CHIMICHE GENERALI

- ◆ Forma composti comuni negli stati di ossidazione +3 (il più importante) e +4. La chimica di Ce^{III} è dominata dallo ione Ce³⁺ (incolore). Gli unici composti solidi di Ce^{IV} sono CeO₂ e CeF₄; Ce⁴⁺(aq) (color arancio) è molto idrolizzato ed in soluzione sono presenti complessi anionici con ossoanioni come leganti (e.g.: [Ce(NO₃)₆²⁻]), forti ossidanti. CeI₂, formalmente un composto di Ce^{II}, è in realtà un conduttore elettrico del tipo Ce³⁺(I⁻)₂e⁻ con e⁻ nella banda di conducibilità.
- •Gli ioni trivalenti dei lantanoidi, Ln^{3+} , formano numerosi complessi con alto numero di coordinazione, in genere 8 o 9. Gli ioni idratati sono prevalentemente del tipo $[Ln(H_2O)_9]^{3+}$; i complessi più stabili sono quelli con leganti che hanno ossigeno come atomo donatore, specialmente se chelanti come $[Ln(NO_3)_5]^{2-}$, $[Ln(L-L)_4]^-$, (L-L = ione β-dichetonato), $[Ln(EDTA)(H_2O)_3]^-$ (EDTA = ione etilendiamminateraacetato). I composti organometallici dei lantanoidi sono prevalentemente quelli con ciclopentadienile (e.g., $Ln(C_5H_5)_3$).

s.o.	specie fondamentali	proprietà acido-base	prop. redox pH = 0	prop. redox pH = 14	alogenuri
+4	CeO_2 $CeO_2 \cdot nH_2O$ Ce^{4+}	base debole	oss forte	inattivo	CeF ₄
+3	Ce_2O_3 $Ce(OH)_3$ Ce^{3+}	base debole	inattivo	rid medio	CeX_3
0	Ce		rid forte	rid forte	
					Altri alogenuri: CeI ₂

produzione: Ln_2O_3 (Ln = lantanoide): 1×10^8 kg/anno (~50% Ce), da bastnäsite (LnCO₃F) e monazite (LnPO₄).

usi: Ce in leghe; nelle reticelle Auer per le lampade a gas; 1-2% di Ce₂O₃ in vetri incolori per assorbire l'UV (negli aerei e negli schermi televisivi); composti di Ce^{IV} sono usati per colorare in giallo vetri e smalti per ceramiche; CeO₂ è usato come catalizzatore nei forni autopulenti e nelle marmitte catalitiche, dove favorisce la conversione di CO in CO₂.

leghe di uso comune: il termine "*mischmetal*" indica leghe di lantanoidi (*e.g.*, Ce 50%, La 45%, Nd 5%), usate per "pietrine" di accendisigari.

importanza biologica: nessuna. pericolosità: elemento non tossico.

note e curiosità:

- Il nome dell'elemento è stato proposto da J.J. Berzelius e W. von Hisinger.
- Cerio è il lantanoide più abbondante.
- Cerio commerciale impuro può contenere torio (radioattivo).

• La prima preparazione del metallo di un lantanoide fu fatta da Carl G Mosander nel 1827 (riduzione di CeCl ₃ con Na), ma ottenne solo una piccola quantità di Ce fortemente contaminata dall'eccesso del riducente e dai prodotti della reazione.