Identificato da Humphry Davy nel 1808. La calce (CaO) fu inserita tra le "sostanze semplici" da Antoine L. Lavoisier et al. nel 1787 [15].

simbolo	numero atomico	peso atomico	raggio atomico/Å	configurazione elettronica	elettronegatività (Pauling)	
Ca	20	40,078	2,31	$[Ar]4s^2$	1,00	

CONTENUTI				
crosta terrestre/ppm	4,2×10 ⁴			
oceani/g m ⁻³	4×10^{2}			
corpo umano (70 kg)	1 kg			

	COMPOSIZIONE ISOTOPICA NATURALE						
\boldsymbol{A}	40	42	43	44	46	48	
%	96,94	0,65	0,13	2,09	<0,01	0,19	
t _{1/2} /anni decadimento	stabile	stabile	stabile	stabile	stabile	4,3×10 ¹⁹ 2β 75%, β 25%	

SPECIE ELEMENTARE

nome	formula	stato di aggregazione	struttura cristallina	temperatura di fusione/C°	temperatura di ebollizione/C°	legame
calcio	Ca	solido	α-Ca: cF	842	1484	metallico

Preparato da Humphry Davy nel 1808 per distillazione dell'amalgama ottenuto dalla elettrolisi di una miscela di CaO e HqO

Metallo bianco-argenteo, tenero, duttile e malleabile. Abbastanza reattivo: è ossidato a Ca^{II} a freddo dall'acqua (con produzione di H_2), dall'aria umida, da F_2 ; a caldo da molti altri elementi. Brucia violentemente all'aria formando CaO e Ca_3N_2 .

Esistono alcune forme allotropiche metalliche con differenti strutture cristalline.

PROPRIETÀ CHIMICHE GENERALI

- ◆ Forma prevalentemente composti inorganici ionici di Ca²⁺, alcuni poco solubili.
- ♦ Colora la fiamma di rosso mattone.

s.o.	specie fondamentali	proprietà acido-base	prop. redox pH = 0	prop. redox pH = 14	alogenuri
+2	$CaO Ca(OH)_2 Ca^{2+}$	base forte	inattivo	inattivo	CaX_2
0	Ca		rid forte	rid forte	

minerali usuali e gemme: *calcite* {CaCO₃}; *dolomite* {CaMg(CO₃)₂}; *gesso* ed *alabastro* {CaSO₄·2H₂O}; *granato*, gemma rosso vivo (vedi note); *nefrite* (*giada*) {Ca₂Mg₅(Si₈O₂₂(OH)₂) contenente impurezze di Fe^{II}}, gemma di vari colori.

produzione: Ca: 2×10⁸ kg/anno (2005 [20]), CaO: 3×10¹¹ kg/anno, CaSO₄: 2×10¹¹ kg/anno; da carbonati, fosfati, solfati, CaF₂. **usi**: CaO (calce viva) e Ca(OH)₂ (calce spenta) in edilizia per la calcina; CaCO₃, marmo di Carrara e componente fondamentale del cemento; CaSO₄·½H₂O (gesso da presa) in edilizia; CaCl₂ come polvere essiccante ed antigelo; CaCO₃ usato come antiacido per i terreni.

importanza biologica: indispensabile per piante ed animali; Ca²⁺ è componente fondamentale dei liquidi extra- e intracellulari e partecipa a meccanismi di regolazione biochimica; Ca₅(OH)(PO₄)₃ (*idroapatite*) nelle ossa; Ca₅F(PO₄)₃ (*fluoapatite*) nello smalto dei denti; CaCO₃ (*aragonite*) in conchiglie; CaCO₃ (*calcite*) nei gusci delle uova.

pericolosità: elemento non tossico; CaO reagisce energicamente con H₂O formando Ca(OH)₂ ed è corrosivo per pelle e mucose.

note e curiosità:

- Il nome dell'elemento è stato proposto da H. Davy.
- Il marmo è il prodotto di una ricristallizzazione a grana estremamente fine di CaCO₃, avvenuta probabilmente 2000 milioni di anni fa.
- La calce viva, CaO, fu preparata dai Romani dal I° secolo d.C.
- L'ossido di calcio, CaO, per azione della fiamma ossidrica emette una intensa luce bianca (limelight) visibile anche a molti chilometri di distanza ed usata un tempo nei fari e nei teatri.
- La durezza di un'acqua misura la concentrazione dei sali di Ca e di Mg in essa: la durezza temporanea misura la concentrazione dei carbonati acidi (e.g., Ca(HCO₃)₂), quella permanente degli altri sali (principalmente solfati).

- La formazione di *calcare* quando si bolle l'acqua è dovuta all'equilibrio Ca(HCO₃)₂ ≒ CaCO₃↓ + CO₂↑ + H₂O, spostato a destra a caldo.
- Il termine "granati" indica un gruppo di minerali di formula generica $M^{II}_{3}M^{III}_{2}(SiO_{4})_{3}$; la pietra semipreziosa rosso scuro chiamata comunemente "granato" è in genere il *piropo*, $Mg_{3}Al_{2}(SiO_{4})_{3}$ contenente impurezze di Fe^{II}.