Prodotto da Dale R. Corson, Kenneth R. Mackenzie e Emilio G. Segré nel 1940 bombardando Bi con particelle α. Trovato (in tracce) in minerali di U da Berta Karlik e Traude Bernert solo nel 1943.

simbolo	numero peso atomico atomico		raggio atomico/Á	configurazione elettronica	elettronegatività (Pauling)	
At	85		2,02	$[Xe]4f^{14}5d^{10}6s^{2}6p^{5}$	2,2	

CONTENUTI				
crosta terrestre/ppm	oceani/g m ⁻³	corpo umano (70 kg)		
tracce				

Si conoscono solo isotopi radioattivi a vita breve: i più importanti sono ²¹⁰At, artificiale (m_a = 209,987 u; $t_{1/2}$ = 8,1 ore; dec: ε) e ²¹¹At, artificiale (m_a = 210,987 u; $t_{1/2}$ = 7,2 ore; dec: ε 58%, α 42%). Esistono isotopi naturali che derivano dai decadimenti di ²³²Th, ²³⁵U e ²³⁸U.

SPECIE ELEMENTARE

nome	formula	stato di aggregazione	temperatura di fusione/C°	temperatura di ebollizione/C°	legame
diastato	At_2	solido	302	~340	cov. mol.

E' il meno reattivo degli alogeni. E' ossidato dagli acidi e reagisce con gli altri alogeni (formando composti interalogeni) e con ossigeno.

PROPRIETÀ CHIMICHE GENERALI

- ♦ Solo studi su tracce (soluzioni < 10^{-10} M) con spettroscopia di massa: si comporta da alogeno. Forma At⁻, AtO⁻, AtO₂⁻, AtO₃⁻.
- ◆Forma anche composti interalogeni, neutri (e.g., AtI) e anionici (e.g., AtI₂⁻).

s.o.	specie fondamentali	proprietà acido-base	prop. redox pH = 0	prop. redox pH = 14
+5	AtO_3^-		oss forte	oss medio
+1	AtO^{-}		oss medio	inattivo
0	At_2		oss debole	oss debole
-1	At ⁻		inattivo	inattivo

produzione: dell'ordine di 10^{-6} g complessiva dal 1940 ad oggi, dalla reazione 209 Bi + $\alpha \rightarrow ^{211}$ At + 2 n.

usi: nessuno.

importanza biologica: nessuna.

pericolosità: elemento altamente radioattivo, ma praticamente assente dall'ambiente.

note e curiosità:

- Il nome dell'elemento è stato proposto da D.R. Corson, K.R. Mackenzie e E.G. Segré.
- At è l'elemento naturale più raro:si ritiene che meno di 30 g siano presenti in tutta la crosta terrestre.
- Il campione più pesante mai prodotto è stato di 5×10^{-8} g.