Specie chimiche predominanti in soluzione acquosa

La specie chimica di un elemento definita "predominante" in una soluzione è la specie con la maggior concentrazione relativa rispetto alle altre specie dell'elemento, nello stesso stato di ossidazione, presenti nella soluzione.

Gli schemi che seguono indicano, per gli stati di ossidazione più comuni dei primi 92 elementi chimici, le specie predominanti in soluzione acquosa a 25 °C, in funzione del pH e per valori prescelti di concentrazione totale degli atomi dell'elemento (in genere, 0,1 M e 1×10^{-3} M). Sono stati ovviamente considerati solo gli elementi e gli stati di ossidazione per i quali è stato possibile trovare un numero sufficiente di dati attendibili e consistenti. Le specie chimiche prese in esame per la costruzione degli schemi sono elencate in una tabella posta alla fine. Gli elementi dei blocchi s, p e d sono elencati secondo i gruppi della Tavola Periodica per facilitarne il confronto; gli elementi del blocco f, invece, per numero atomico crescente.

Ogni riga degli schemi si riferisce ad un elemento in un dato stato di ossidazione e una data concentrazione e riporta:

- il simbolo dell'elemento con lo stato di ossidazione e la concentrazione;
- il numero di una eventuale nota, posta in fondo a ciascun gruppo;
- nell'intervallo di pH 0-14: le specie predominanti in soluzione (in **nero**), le specie pure solide (in **rosso**), le specie pure gassose alla pressione di 1 bar (in **verde**); in questo intervallo le linee verticali tra due specie in soluzione corrispondono al pH al quale le due specie hanno la stessa concentrazione e rappresentano quindi il confine tra le rispettive zone di predominanza. Le linee tra una specie in soluzione ed una pura rappresentano invece il pH oltre al quale le specie in soluzione non possono esistere, alla concentrazione totale prescelta, per limiti di solubilità. Specie chimiche che sono predominanti solo in un intervallo di pH inferiore a 0,4 unità sono state a volte omesse dagli schemi per semplificarli. Se la zona di predominanza di una specie è graficamente troppo stretta per contenere la formula della specie, la formula è scritta nella zona adiacente con una freccia che ne indica la corretta posizione, oppure in una nota in fondo allo schema.

I valori di pH usati per la costruzione degli schemi sono stati dedotti dai valori delle costanti di equilibrio tra le specie coinvolte, a 25 °C o a temperature vicine. Le costanti considerate sono quelle degli equilibri acido/base (*K_x, * β_x , Ka_x, vedi esempi sotto), quelle di solubilità (*K_{sx}) e quelle monomero/oligomero (e.g.,*K_{x,y}). Nei casi in cui la bibliografia riporti più valori per una costante, è stato considerato il valore ritenuto più attendibile (in genere quello medio); per ogni elemento, i valori di tutte le costanti sono stati poi corretti per renderli consistenti con le relazioni matematiche tra i vari tipi di costanti (e.g.: * β_2 = *K₁ × *K₂; *Ks₂ = *Ks₀ × * β_2). Se i valori riportati in bibliografia per una costante sono troppo diversi tra loro per permettere tale valutazione e correzione, al posto della linea verticale abbiamo indicato una banda grigia compresa tra il valore minimo e quello massimo del pH di confine; la reale posizione del confine tra le due specie indicate a destra e a sinistra della banda dipende dal reale valore della costante. In alcuni casi che coinvolgono un equilibrio di solubilità del quale in letteratura sono riportati valori molto diversi della costante, esiste un altro soluto predominante in un intervallo di pH posto all'interno della banda grigia; questo soluto è indicato da una lettera, la sua formula è riportata in una nota e il confine di predominanza con l'altro soluto è rappresentato, all'interno della banda, da una linea tratteggiata.

I dati sono stati ricavati prevalentemente da:

- C.C. Meloche and F. Vratny, "Solubility Product Relations in the Rare Earth Hydrous Hydroxides", *Analytica Chimica Acta*, **20**, 415 (1959).
- W. Feitkneckt and P. Schindler eds., "Solubility Constants of Metal Oxides, Metal Hydroxides and Metal Hydroxide Salts in Aqueous Solution", Butterworth, London (1963); Pure and Applied Chemistry, 6, 125 (1963).
- L.G. Sillén, "Stability Constants of Metal-ion Complexes Section I Inorganic Ligands", The Chemical Society, London, Special Publication No. 17 (1964).
- C.S.G. Phillips and R.J.P. Williams, "*Inorganic Chemistry*", vol. 1(1965) and 2 (1966), Oxford University Press, New York.

- M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solutions", Pergamon Press, Oxford (1966).
- J.A. Campbell and R.A. Whiteker, "A Periodic Table Based on Potential-pH Diagrams", *Journal of Chemical Education*, **46**, 90 (1969).
- D.D. Perrin, "Dissociation Constants of Inorganic Acids and Bases in Aqueous Solution", Butterworth, London (1969); Pure and Applied Chemistry, **20**, 133-236 (1969).
- R.M. Smith and A.E. Martell, "Critical Stability Constants Vol. 4 Inorganic Complexes", Plenum Press, New York (1974).
- C. F. Baes, Jr. and R. E. Mesmer, "The hydrolysis of cations", Wiley & Sons, New York (1976).
- J. Kragten, "Atlas of Metal-ligand Equilibria in Aqueous Solution" Ellis Horwood ltd, Chichester, England (1977).
- E. Wilhelm, R. Battino, and R.J. Wilcock, "Low-Pressure Solubility of Gases in Liquid Water" *Chemical Reviews*, **77**, 819 (1977).
- R.K. Freier "Aqueous solutions, Vol 2 supplements"; De Gruyter, Berlin 1977.
- D.W. Barnum, "Hydrolysis of Cations Formation Constants and Standard Free Energies of Formation of Hydroxo Complexes", *Inorganic Chemistry*, **22**, 2297 (1983).
- A.J. Bard, R. Parson, and J. Jordan, eds., "Standard Potentials in Aqueous Solution", Dekker, New York (1985).
- P.L. Brown and H. Wanner, "Predicted Formation Constants Using the Unified Theory of Metal Ion Complexation", NEA Data Bank, (1987):
- www.iaea.org/inis/collection/NCLCollectionStore/_Public/19/098/19098547.pdf
- F.A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 5° ed., Wiley (1988).
- K. Spahiu and J. Bruno, "A selected thermodynamic database for REE to be used in HLNW performance assessment exercises", Svensk Kärnbränslchantering A.B. Technical Report TR-95-35, Stockholm (1995):
 - http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/28/019/28019633.pdf
- N.N. Greenwood and A. Earnshaw, "Chemistry of Elements", 2nd ed., Butterworth Heinemann, Woburn (MA, USA) (1998).
- N. Wiberg ed., "Holleman-Wiberg Inorganic Chemistry", Academic Press, San Diego (2001).
- N. Takeno, "*Atlas of Eh-pH diagrams*", Geological Survey of Japan Open File Report no. 419 (2005): www.gsj.jp/data/openfile/no0419/openfile419e.pdf
- L. Duro, M. Grivé, E. Cera, C. Domènech, and J. Bruno, "Update of a Thermodynamic Database for Radionuclides to Assist Solubility Limits Calculation for Performance Assessment", Svensk Kärnbränslchantering A.B. Technical Report TR-06-17, Stockholm (2006): skb.se/upload/publications/pdf/TR-06-17.pdf
- D.R. Lide, ed., "CRC Handbook of Chemistry and Physics", 90° ed., internet version (2010).
- J.-L. Burgot, "Ionic Equilibria in Analytical Chemistry", Springer (2012).
- "F*A*C*T EpH–Web": www.crct.polymtl.ca/ephweb.php
- Wikipedia, "Solubility Table": http://en.wikipedia.org/wiki/Solubility_table
- R. Rausch, "Das Periodensystem der Elemente online", (2010): www.periodensystem-online.de/index.php
- M. Gerken, "Hydrolysis of Cations and and Acidity of Aqua Complexes of Metal Cations", in: Chemistry 2810 Lecture Notes, Lethbridge University, Canada, 8th Lecture, p. 51: http://classes.uleth.ca/200501/Chem2810a/lecture_8pdf
- Universidad Autonoma Metropolitana, Unidad Iztapalapa (Messico): http://chapter 10_aqueous_stability_diagrams
- Le seguenti pubblicazioni hanno invece fornito dati per un singolo elemento:
 - Be) J. Bruno, J. Chem. Soc. Dalton Trans., 2431 (1987).
 - Sr) Salt Lake Metals, "Solubility Products of Selected Compounds": www.saltlakemetals.com/SolubilityProducts
 - In) D.G. Tuck, Pure Appl. Chem., 55(9), 1477 (1983).
 - Si) X.G. Zhang, "*Electrochemistry of Silicon and its Oxide*", Kluwer Academic / Plenum Publishers, New York, 2001, p, 51.

- G.B. Alexander, W.M. Heston, and R.K. Iler, J. Phys. Chem., 58(6), 453 (1954).
- R.O. Fournier and J.J. Rowe, American Mineralogist, 62, 1052 (1977).
- I. Gunnarsson and S. Amórsson, Geochimica et Cosmochimica Acta, 64(13), 2295 (2000).
- R. Siever, *The Journal of Geology*, **70**, 127 (1962).
- Sn^{II}) M. Gorman, J. Am. Chem. Soc., **61**, 3342 (1939).
 - W. Mark, Acta Chem. Scand., A31, 157 (1977).
- Sn^{IV}) D.R. Mikazu Yui, H.T. Schaef, and A. Kitamura, *J. Solution Chem.*, 40, 1155 (2011).
 H. Gamsjäger, T. Gaida, J. Sangster, S.K. Saxena, and W. Voigt, "Chemical Thermodynamics, vol. 12: Chemical Thermodynamic of Tin", OECD (2012): www.oecd-nea.org/dbtdb/pubs/tin.pdf
- Pb^{II}) Å. Olin, *Acta Chem. Scand.*, 14, 814 (1960).
 L. Pajdowswi and Å. Olin, *Acta Chem. Scand.*, 16, 983 (1062).
- Bi) Å. Olin, Acta Chem Scand., 13, 1791 (1959).
- Br^V) R. Glacer, M. Delarose, and A.P. Salan, J. Thermodyn. Catal., 4, 115 (2013).
- Ti) L.F. Armarego and C.L.L. Chai, "Purification of Laboratory Chemicals, 6th ed. ", Elsevier, Oxford U.K. (2009).
- Zr) P. Brown *et al.*, "*Chemical Thermodynamic*, vol. 8: *Chemical Thermodynamic of Zirconium*" Elsevier, Amsterdam (2000).
- V^{III}) P.S. Hooda, ed., "Trace Elements in Soils", Wiley, Chichester U.K. (2010).
- V^{IV}) F.J.C. Rossotti and H.S. Rossotti, Acta Chem. Scand., 9, 1177 (1955).
- V^V) M.T. Pope and B.W. Dale, *Quart. Review*, **22**, 527 (1968).
- Cr^{III}) J.I. Morrow and J. Levy, J. Phys, Chem., 72(3), 885 (1968).
- Cr^{VI}. F. Brito et al., Polyhedron, **16**(21), 3835 (1997).
- Fe^{III}) R.M. Milbur and W.C. Vosburg, J. Am. Chem. Soc., 77, 1352 (1955)
 L.N. Mulay and P.W. Selwood, J. Am. Chem. Soc., 77, 2693 (1955).
- Ru) R.N. Goldberg and L.G. Hepler, Chem. Rev., 68. 229 (1968).
- Os) R.N. Goldberg and L.G. Hepler, Chem. Rev., 68. 229 (1968).
- Rh) R.N. Goldberg and L.G. Hepler, Chem. Rev., 68. 229 (1968).
- Ir) H. Gamsjäger and P. Beutler, J. Chem. Soc. Dalton Trans., 1415 (1979).
- Pd) R.N. Goldberg and L.G. Hepler, *Chem. Rev.*, **68**. 229 (1968).
 - T. Shi and L.I. Elding, Acta Chem. Scand., 52, 897 (1998).
 - A. Kitamura and M. Yui, J. Nuclear Science and Technology, 47, 760 (2010).
- Au) I. Mironov and E. Makotchenko, J. Solution Chem., 38, 725 (2009).
- Lu) H.L. Gonzáles, M.J. Reyes, M. Solache-Rios, and A. Rojas-Hernández, J. Radioanal. Nuclear Chem., 274, 103 (2007).
- Th) S. Hietanen and L.G. Sillén, Acta Chem. Scand., 13, 533 (1959); 18, 1018 (1964).
 - V. Neck et al., Radiochim. Acta, 90, 485 (2002).
 - M. Rand, J. Fuger, I. Grenthe, V. Neck, and D. Rai, "Chemical Thermodynamics, vol. 12: Chemical Thermodynamic of Thorium, OECD 2008: https://www.oecd.neg.org/science/pubs/2007/6254_DR_chemical thermodyn_11_ndf
 - https://www.oecd-nea.org/science/pubs/2007/6254-DB-chemical-thermodyn-11.pdf
- U^{IV}) S. Hietanen, Acta Chem. Scand., 10, 1531 (1956).
 - D. Rai, A.L. Felmy and J.L. Ryan, *Inorg. Chem.*, **29**, 260 (1990).
- U^{VI}) A. Peterson, *Acta Chem. Scand.*, **15**, 101 (1961).
 - C.F. Baes Jr. and N.J. Meyer, Inorg, Chem., 1, 780 (1962).
 - R.M. Rush and J.S. Johnson, J. Phys. Chem., 67, 821 (1963).
 - H.S. Dunsmore, S. Hietanen and L.G. Sillén, Acta Chem Scand., 17, 2644 (1963).

Esempi di costanti (Meⁿ⁺ = catione metallico; El = elemento; (s) = stato solido; per semplicità si è usato H⁺ invece di H₃O⁺):

	$\frac{\text{Me(OH)}_{x-1}^{(n-x+1)+} + \text{H}_2\text{O} \leftrightarrows \text{Me(OH)}_x^{(n-x)+} + \text{H}^+}{\text{Fe}^{3+} + \text{H}_2\text{O} \leftrightarrows \text{Fe}(\text{OH})^{2+} + \text{H}^+}$ $\frac{\text{Fe}(\text{OH})^{2+} + \text{H}_2\text{O} \leftrightarrows \text{Fe}(\text{OH})_2^+ + \text{H}^+}{\text{Fe}(\text{OH})^{2+} + \text{H}_2\text{O} \leftrightarrows \text{Fe}(\text{OH})_2^+ + \text{H}^+}$
* β_{x} (Me ⁿ⁺) * β_{2} (Fe ³⁺)	$Me^{n^{+}} + x H_{2}O \leftrightarrows Me(OH)_{x}^{(n-x)^{+}} + x H^{+}$ Fe ³⁺ + 2 H ₂ O \ \ Fe(OH)_{2}^{+} + 2 H^{+}
$ ^*\beta_{x,y} (Me^{n^+}) $	y Me ⁿ⁺ + x H ₂ O \leftrightarrows Me _y (OH) _x ^{(yn-x)+} + x H ⁺ 3 Fe ³⁺ + 4 H ₂ O \leftrightarrows Fe ₃ (OH) ₄ ⁵⁺ + 4 H ⁺
*K _{sx} (Me(OH) _n (s)) *K _{s0} (Fe(OH) ₃) *K _{s2} (Fe(OH) ₃)	$\begin{array}{l} Me(OH)_n(s) + (n-x) H^+ \leftrightarrows Me(OH)_x^{(n-x)+} + (n-x) H_2O \\ Fe(OH)_3(s) + 3 H^+ \leftrightarrows Fe^{3+} + 3 H_2O \\ Fe(OH)_3(s) + H^+ \leftrightarrows Fe(OH)_2^+ + H_2O \end{array}$
$\begin{array}{c} K_{ax} \left(H_{n}ElO_{m} \right) \\ K_{a1} \left(H_{3}PO_{4} \right) \\ K_{a2} \left(H_{3}PO_{4} \right) \end{array}$	$\begin{array}{l}H_{(n-x+1)}ElO_{m}^{(x-1)-} \leftrightarrows H_{(n-x)}ElO_{m}^{x-} + H^{+}\\H_{3}PO_{4} \leftrightarrows H_{2}PO_{4}^{-} + H^{+}\\H_{2}PO_{4}^{-} \leftrightarrows HPO_{4}^{2-} + H^{+}\end{array}$

Elementi del blocco s

Gruppo 1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
$Li^{I} \leq 0,1 M$								Li ⁺						LiOI	H→	
$Na^{I} \leq 0,1 M$								Na ⁺								
K ^I ≤0,1 M								K^+								
$Rb^{I} \leq 0,1 M$								Rb^+								
$Cs^{I} \leq 0,1 M$								Cs ⁺								
Gruppo 2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
Be ^{II} 0,1 M			Be ²⁺		←	Be ₃ (O	$H)_{3}^{3+}$]	Be(OH)2					
$Be^{II} 10^{-3} M$			В	e ²⁺					F	Be(OH)	2		Be	e(OH) ₃	→	
Mg ^{II} 0,1 M	Т				M	g ²⁺						Mg(OH) ₂			
Mg^{II} 10 ⁻³ M						Mg ²⁺						N	/Ig(OH)2		
Ca ^{II} 0,1 M	Т						Ca ²⁺						(Ca(OH)	2	
Ca^{II} 10 ⁻³ M	1						Ca ²	2+				Ca	a(OH) ⁺	_→ [a	
Sr ^{II} 0,1 M	2						Sr ²⁺						Sr(0	OH) ⁺ →	b	
$\mathrm{Sr}^{\mathrm{II}}$ 10 ⁻³ M	2						S	Sr^{2+}					Sr(C)́) ⁺ →	b	

1) $a = Ca(OH)_2$

Ba^{II} 0,1 M

 $Ba^{II} 10^{-3} M$

2) $b = Sr(OH)_2$

Elementi del blocco p

Ba²⁺

Ba²⁺

Ba(OH)₂

 $Ba(OH)^+$ -

Gruppo 13 () 1 2	3	4 5	6	7	8	9	10	11	12	13	14	рН
B ^{III} 0,8 M 3			H ₃ BO ₃		•		с	d		B(OH)	4		
$B^{III} < 10^{-2} M$			H_3BO_3						B(OH)4 ⁻			
Al ^{III} 0.1 M	A1 ³⁺					A1(0)	H),			A1(OH)'	L	
$\frac{\text{Al}^{\text{III}}}{\text{Al}^{\text{III}}} \frac{10^{-3} \text{ M}}{10^{-3} \text{ M}}$	Al ³⁺				A	$(OH)_3$	1)3			A	$(OH)_4^{-1}$	I	
		-				× /•				-	× 7:		
Ga ^{III} 0,1 M 4	Ga ³⁺		Ga	a(OH) ₃		Ga(OH) ₄	- →	e	Ga	$a(OH)_6^{3}$	-	
$Ga^{III} 10^{-3} M 4$	Ga ³⁺	f	Ga	u(OH) ₃		(Ga(OF	I) ₄	e	G	$a(OH)_6^{-3}$	-	
ш	2.												
In ^{III} 0,1 M 5	In ³⁺	g				In(OH)3					~	$In(OH)_4$
$In^{III} 10^{-3} M$	In ³⁺				In(O	H)3						4	In(OH) ₄
												_	
Tl ¹ ≤0,1 M		Tl^+						Tl(OH)	→				
Tl ^{III} 0,1 M				Т	TI(OH)	3							
$Tl^{III} 10^{-3} M$	← Tl ³⁺			1	[](OH]	3							

3) $c = B_3O_3(OH)_4^-$; $d = B_3O_4(OH)_3^{2-}$ 4) $e = Ga(OH)_5^{2-}$; $f = Ga(OH)^{2+}$ 5) $g = In_3(OH)_4^{5+}$

Gruppo 14	() 1	2	3	4	5	6	7	8	9	10	11		12	13	14	pН
C ^{IV} 0,1 M				CO	2				HC	CO_3^-				CO3 ²⁻	-		
$C^{IV} \leq 10^{-2} \ M$				CO_2					HCC	D_{3}^{-}				CO3 ²⁻	-		
Si ^{IV} 0,1 M	6					Si	\mathcal{D}_2				H_3S	iO ₄ ⁻	→	h	HSiO	3- 4	
$\mathrm{Si}^{\mathrm{IV}} \leq 10^{-3} \mathrm{M}$	6				Н	I ₄ SiO ₄					H	I ₃ SiO ₄	-	h	HSiO	3- 4	
Ge ^{IV} 0,2 M	7			(GeO ₂				i	j		H ₃ Ge0	O_{4}^{-}		H ₂ GeO	D_4^{2-}	
$Ge^{IV} \leq 10^{-2}M$	8				H ₄ Ge	O_4					H	GeO ₄	-		H ₂ GeO	D_4^{2-}	
$\mathrm{Sn}^{\mathrm{II}}$ 0,1 M		Sn ²⁺						Sr	nO					Sn(C	OH)3 [−] -	→	
$\mathrm{Sn}^{\mathrm{II}}$ 10 ⁻³ M		Sn ²	+					SnO						Sn	(OH) ₃ ⁻		
				•													
Pb^{II} 0,1 M	9			Pb ²⁺				Pb ₄ (OI	$(1)_4^{4+}$		Р	b(OH)	2		k		
$Pb^{II} 10^{-3} M$	10				Pb^{2+}		Pt	•(OH) ⁺ -	→	1	Pb	(OH) ₂		Pb	(OH)4 ²	-	
$Pb^{IV} \ge 10^{-3} M$								PbO	2								

6) SiO₂ amorfa; h = H₂SiO₄²⁻ 7) i = H₄GeO₄; j = [Ge(OH)₄]₈(OH)₃³⁻ 8) a pH < 1, potrebbero essere predominanti idrossocationi di Ge^{IV} 9) k = Pb(OH)₄²⁻ 10) l = Pb₃(OH)₄²⁺

Gruppo 15	0	1		2	3	4	5	6	7		8	9	10	11	12	13	14	pН
$N^{-III} \leq 0,1 M$						N	$\mathrm{JH_4}^+$]	NH ₃			
N ^{−II} ≤0,1 M					N	${}_{2}\mathrm{H_{5}}^{+}$								N_2H_4				
$N^{-I} \leq 0,1 M$				NH	$_{3}\mathrm{OH}^{+}$								NH ₂ OI	H				
$N^{III} \leq 0,1 M$		Н	INO	2							NC	D_2^{-}						
N ^V ≤0,1 M					NO ₃ -													
P ^I ≤0,1 M 1	1	m	P(H) ₂ O ₂ -															
$P^{III} \leq 0,1 M$		H ₂ P(H)C)3		HP(H)O ₃ ⁻ P(H)O ₃ ²⁻													
P ^V ≤0,1 M		H ₃ PO) ₄			H	$_2PO_4^-$					ŀ	IPO ₄ ^{2–}			PO_4^3	-	
As ^{III} 0,3 M 12	2					As ₂	03			H ₃ A	sO ₃ –	→		H ₂ As	sO_3^-		n	
$As^{III} \leq 0,1 M$ 12	2					H34	AsO ₃							H ₂ As	sO_3^-		n	
$As^{V} \leq 0,1 M$		H ₃ As0	\mathcal{D}_4	H	I ₂ AsO ₄	-	HA	sO4 ²⁻					AsC	3- 4				
Sb ^{III} 0,1 M	Τ								Sb ₂	D ₃								
$Sb^{III} 10^{-3} M$		←- Sb(C	DH) ²	2+	Sb_2O_3 $Sb(OH)_4 \rightarrow$													
Sb ^V 0,1 M	T	Sb	0_2O_5		Sb(OH)6													
$\mathrm{Sb}^{\mathrm{V}} \leq 10^{-2} \mathrm{M}$		Sb(C)H)5							Sł	o(OH)_6						
Bi ^{III} 0,1 M 11	3 I	Bi ³⁺	0	р	Big(C)))	25+					Bi	203					
Bi ^{III} 10 ⁻³ M 1.	3	Bi ³⁺	q	0	Bi ₉ ((OH))22 ⁵⁺					I	Bi ₂ O ₃					

11) $m = HP(H)_{2}O_{2}$ 12) $n = HAsO_{3}^{2-}$ 13) $o = Bi_{6}(OH)_{12}^{6+}$; $p = Bi_{9}(OH)_{20}^{7+}$; $q = Bi(OH)^{2+}$

Gruppo 16	0 1 2	3 4 5	6 7 8 I I I	9 10	11 12 13	14 pH						
O ^{-I} ≤0,1 M		H ₂	O ₂		HO ₂ ⁻							
S ^{-II} 0,2 M		H ₂ S		HS	S^{-} S^{2}							
S ^{-II} 10 ⁻³ M		H_2S		HS^-	S ²⁻	→						
S ^{IV} ≤0,1 M	SO ₂	HSO ₃ ⁻		SO	32-							
S ^{VI} ≤0,1 M	HSO_4^-		SO ₄	2-								
Se ^{-II} 0,15 M	H ₂ Se	←-H ₂ Se	HSe⁻			← Se ²⁻						
Se^{-II} 10 ⁻³ M	H ₂ Se		HSe⁻			← Se ²⁻						
$Se^{IV} \leq 0,1 M$	H_2SeO_3	HSeO ₃ ⁻			SeO ₃ ^{2–}							
$Se^{VI} \leq 0,1 M$	HSeO ₄ ⁻		SeO ₄ ²									
Te ^{-II} 0,3 M	H ₂ Te	← H ₂ Te	HTe ⁻		Te ^{2–}							
$Te^{-II} \leq 0,1 M$	H ₂ Te		HTe [−]		Te ^{2–}							
Te ^{VI} ≤0,1 M		H ₆ TeO ₆		H ₅ TeO ₆ ⁻	$H_4 TeO_6^{2-}$							
Gruppo 17		3 4 5	6 7 8	9 10	11 12 13	14 pH						
F ^{−I} ≤0,1 M	HF			F ⁻								
Cl ^{−I} ≤0,1 M			Cl⁻									
$Cl^{I} \leq 0,1 M$		HClO		C	IO ⁻							
Cl ^{III} ≤0,1 M	HClO ₂		ClO	2								
Cl ^V ≤0,1 M			ClO ₃ ⁻									
Cl ^{VII} ≤0,1 M			ClO_4^-									
Br ^{−I} ≤0,1 M			Br⁻									
Br ^I ≤0,1 M		HBrO			BrO ⁻							
Br ^V ≤0,1 M			$\mathrm{BrO_3}^-$									
Br ^{VII} ≤0,1 M			$\mathrm{BrO_4}^-$									
I ^{−I} ≤0,1 M			Γ									
I ^I ≤0,1 M	H_2IO^+	· · · · · · · · · · · · · · · · · · ·	HIO		IO ⁻							
$I^V \leq 0,1 M$	←– HIO3		IO_3^-									
I ^{VII} 0,1 M	H ₅ IO ₆	IO ₄		$H_2 I_2 O_{10}^{4-}$	H ₂ IO ₆	3-						
I ^{VII} 10 ⁻³ M	H ₅ IO ₆	IC	0_4^{-}	$H_3IO_6^{2-}$	H ₂ IO ₆ ³⁻							
Gruppo 18		3 4 5	6 7 8	9 10	11 12 13	14 pH						
$Xe^{VI} \leq 0,1 M$		XeO ₃		HXeO ₄ [−] →	XeO_4^{2-}							
Xe ^{VIII} ≤0,1 M	H ₄ XeO ₆	H_4XeO_6 $H_3XeO_6^ H_2XeO_6^{2-}$ $HXeO_6^{3-}$										

Elementi del blocco d

Gruppo 3	14		$\frac{2}{1}$	3	4 r	5	6	7	8 	9 	10	11	12 	13 (OH),-	14	pН
$\frac{\mathrm{Se}^{-0,1}\mathrm{W}}{\mathrm{Se}^{\mathrm{III}} \ 10^{-3} \mathrm{M}}$	17		Sc	3+	I	s ← S($c(OH)^2$	+	Sc(0	OH)3			Sc	$(OH)_4^ (OH)_4^-$	7	
$\begin{array}{c} Y^{III} 0,1 \text{ M} \\ Y^{III} 10^{-3} \text{ M} \end{array}$			Y Y Y	-3+ -3+						Y(Y(OH) ₃ OH) ₃					
14) $r = Sc_2(C)$)H)2	$4^{+}; s = 5$	Sc ₃ (OH) ₅ ⁴	+												
Gruppo 4		0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
Ti ^{IV} 0,1 M			TiO(OI	H)2]	Ti(OH))6 ²⁻					
$Ti^{IV} 10^{-3} M$	15	t	TiO(OI	H)2					Ti(C	0H) ₆ ²⁻						
15) t = Ti(OF	$(H)_2^2$	+														
Gruppo 5		0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
V ^{III} 0,1 M			V ³⁺	←_`	V ₂ (OH	$)_2^{4+}$			V	(OH) ₃						
V^{III} 10 ⁻³ M	16		V^{3+}	u	←_	V(OH) ₂	2+			V(OH)3					
V ^{IV} 0,1 M			VO^{2+}			1	VO ₂					HV ₂ C	D_{5}^{-}			
$V^{IV} 10^{-3} M$			VO ²⁺			VO ₂	2				HV ₂ C	b_{5}^{-}				
V ^V 0.1 M	17	v	V ₂ O ₅	w	HV	10028^{5-}	x		$V_4 O_{12}^{4-}$			HVO ₄	2–	V	D_4^{3-}	
$V^{V} 10^{-3} M$	17		VO_2^+	W	у	10 - 20	H ₂ VC	D_4^{-}	1 1 1 1 2		HV	/O ₄ ²⁻		V	D_4^{3-}	
NHV 01N	T												2.11	0.5		
$Nb^{+} 0, I M$					М	Nb	$_{2}O_{5}$			<u> </u>		N		$5O_3$		
ND 10 M					INI	$0_2 0_5$						N	603			
16) $u = V(OI = 17)$ $v = VO_2^+$	H) ²⁺ ; w	$\mathbf{v} = \mathbf{H}_2 \mathbf{V}_1$	₀ O ₂₈ ^{4–} ; x	$= V_{10}O_{2}$	^{4–} ; y	= HV ₁₀	O ₂₈ ⁵⁻									
Gruppo 6	_ (0 1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
Cr ^{III} 0,1 M	18	(Cr^{3+}	Z	C	r ₃ (OH) ₄	5+		•		Cr(OH)	3				
Cr^{III} 10 ⁻³ M	18		Cr ³⁺		Z		←	- Cr ₃ (0	OH)4 ⁵⁺		Cr(OH])3		Cr(OH	$[]_4^{-}$	
Cr ^{VI} 0,1 M	19	α	←– HCr ₂ C	D_7^{-} C1	207^{2-}						CrO	2-				
$Cr^{VI} \leq 10^{-2} M$	[←]	H ₂ CrO ₄	HCı	O_4^-						CrO ₄	2-				
Ma ^{VI} 0.1 M	20	1	N/ 0				M	0 6	-		$M_{2}O^{2}$	_				
MO = 0,1 M $Mo^{VI} = 10^{-3} M$	20 1		MoO				← IVI0 5-	$0_7 O_{24}$		Ma	$\frac{1000_4}{100^{2-}}$					
	L		1003				24			IVIC	JU ₄					
W ^{VI} 0,1 M				WO ₃ ·H	I ₂ O						WO.	2- 4				
$W^{VI} 10^{-3} M$			W	$O_3 \cdot H_2O$,	WO_4^{2-}					
18) $z = Cr_2(C)$	DH)	24+														

19) $\alpha = H_2 CrO_4$ 20) $\beta = HMo_7 O_{24}^{5-}$

Gruppo 7 ⁰	1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
Mn ^{II} 0,1 M				Mn ²⁺	2+					11	Mn(Ol	H) ₂			
Mn ¹¹ 10 ⁻³ M				M	n^{2+}			Mn ₂ (O) ₃ ⁺ →		М	n(OH) ₂	2		
Mn ^{VII} ≤0,1 M							MnO ₄	-							
$Tc^{IV} \ge 10^{-3} M$							TcO ₂								
Tc ^{VII} ≤0,1 M							TcO ₄	-							
Re ^{VII} ≤0,1 M							ReO ₄	_							
					-	ć	_	0	0	10		10	10		
Gruppo 8 0		2	3	4	5	6	/	8	9	10		12	13	14	рН
$\frac{\text{Fe}^{\text{II}} 0,1 \text{ M}}{\text{Fe}^{\text{II}} 10^{-3} \text{ M}}$			F	$\frac{e^{2^+}}{Fe^{2^+}}$						Fe($\frac{(OH)_2}{Fe(OH)_2}$	[]2			
Fe ^{III} 0,1 M 21	Fe ³⁺	γ						Fe(OH)3			/-			
$\mathrm{Fe}^{\mathrm{III}}$ 10 ⁻³ M	Fe ³⁺							Fe(O	H)3						
Ru ^{VIII} 0,2 M					RuC) ₄				H ₂ Ru	.O ₅ →	H	RuO ₅ ⁻		
Ru ^{VIII} ≤0,1 M					H2	2RuO5						H	RuO_5^-		
Os ^{VIII} 0,3 M						OsO4				H ₂ OsC) ₅ –→		HOsO	5	
Os ^{VIII} ≤0,1 M						H ₂ Os0	O ₅						HOsO	5	
21) $\gamma = Fe_3(OH)_4^{5+}$	F														
Gruppo 9 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	рH
Со ^п 0,1 М	Co ²⁺						Co ₂ (O)	$(H)_{2}^{2+}$					Co(OF	I_{2}	1
Co ^{II} 10 ⁻³ M	С	o ²⁺					2	Co ₂ (C	$(H)_2^{2+}$			Co(C) ₂ →		
Gruppo 10 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
Ni ^{II} 0,1 M			Ni	2+						Ni(C	DH) ₂				
Ni ^{II} 10 ⁻³ M				Ni ²⁺						1	Ni(OH)	2			
Pd ^{II} 0,1 M							Pd(OH)2							
$Pd^{II} 10^{-3} M$					F	Pd(OH))2					I	Pd(OH)	3 →	
Gruppo 11 ⁰	1	2	3	4	5	6	7	8	9	10	11	12	13	14	рН
Cu ^{II} 0,1 M		Сι	1 ²⁺						Cu(OH) ₂					
$Cu^{II} 10^{-3} M$			Cu ²⁺							Cu(OH)2				
Ag ^I 0,1 M				Ag^+						A	g(OH)				
$Ag^{1} 10^{-3} M$ 22				A	\g ⁺						Ag(OH)		δ	
Au ^{III} 0,1 M							H ₃ AuC)3							
$Au^{III} 10^{-3} M$						H	₃ AuO ₃					Au	(OH) ₅ ²⁻	- 	

22) $\delta = Ag(OH)_3^{2-}$

Gruppo 12	C) 1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
Zn ^{II} 0,1 M				Zn ²	+						Zn(O	H)2				
Zn^{II} 10 ⁻³ M	23				Zn ²⁺						Zn(C	DH) ₂			ε	
Cd^{II} 0,1 M					Cd^{2^+}						C	d(OH) ₂				
Cd^{II} 10 ⁻³ M					Cď	2+						Cd(O	H) ₂			
Hg ^{II} 0,1 M		Hg ²⁺						I	Hg(OH)	2						
$Hg^{II} 10^{-3} M$		Н	$[g^{2+}]$						Hg(OH)2						

23) $\epsilon = Zn(OH_{)4}^{2-}$

Elementi del blocco f

lantanoidi (6 7	8 9 10 1 I I I	1 12 13	14 pH
$La^{III} 0,1 M$	La^{3+}		La	(OH) ₃	
La 10 M 24	La			(OH)3	← La(OH)4
Ce ^{III} 0,1 M	Ce ³⁺	$\operatorname{Ce}_3(\operatorname{OH})_5^{4+} \rightarrow$	(Ce(OH) ₃	
Ce ^m 10 ⁻⁵ M 25	Cest		<u>η</u> C	e(OH) ₃	\leftarrow Ce(OH) ₄
Pr ^{III} 0,1 M	Pr ³⁺		Pr(C	DH) ₃	
Pr ^{III} 10 ⁻³ M 26	Pr ³⁺		θ Pr(OH) ₃	\leftarrow Pr(OH) ₄ ⁻
Nd ^{III} 0,1 M	Nd ³⁺		Nd(C)) ₃	
Nd ^{III} 10 ⁻³ M	Nd ³⁺		Nd	(OH) ₃	
Sm ^{III} 0,1 M	Sm ³⁺		Sm(O	H) ₃	
Sm ^{III} 10 ⁻³ M	Sm ³⁺		Sm(C	H) ₃	\leftarrow Sm(OH) ₄ ⁻
Eu ^{III} 0,1 M	Eu ³⁺		Eu(OH))3	
Eu ^{III} 10 ⁻³ M	Eu ³⁺		Eu(C	PH)3	
Gd ^{III} 0,1 M	Gd ³⁺		Gd(OH)3	
Gd ^{III} 10 ⁻³ M	Gd ³⁺		Gd(OH) ₃		← Gd(OH) ₄ ⁻
Tb ^{III} 0,1 M	Tb ³⁺		Tb(OH)	3	← Tb(OH)4 ⁻
Tb ^{III} 10 ⁻³ M	Tb ³⁺		Tb(OH) ₃		\leftarrow Tb(OH) ₄ ⁻
Dy ^{III} 0,1 M	Dy ³⁺		Dy(OH) ₃		← Dy(OH) ₄ ⁻
$Dy^{III} 10^{-3} M$	Dy ³⁺		Dy(OH) ₃		← Dy(OH)4 ⁻
Ho ^{III} 0,1 M	Ho ³⁺		Ho(OH) ₃		← Ho(OH) ₄ -
$Ho^{III} 10^{-3} M$	Ho ³⁺		Ho(OH) ₃		← Ho(OH) ₄ ⁻
Er ^{III} 0,1 M	Er ³⁺		Er(OH) ₃		← Er(OH) ₄ ⁻
Er ^{III} 10 ⁻³ M 27	Er ³⁺		Er(OH) ₃		t
Tm ^{III} 0,1 M	Tm ³⁺		Tm(OH) ₃		← Tm(OH) ₄ ⁻
$Tm^{III} 10^{-3} M 28$	Tm ³⁺		Tm(OH) ₃	к	
Yb ^{III} 0,1 M	Yb ³⁺		Yb(OH) ₃		← Yb(OH) ₄ ⁻
$Yb^{III} 10^{-3} M$	Yb ³⁺		Yb(OH) ₃		← Yb(OH) ₄ ⁻
Lu ^{III} 0,1 M	Lu ³⁺		Lu(OH) ₃		← Lu(OH)4 ⁻
Lu ^{III} 10 ⁻³ M	Lu ³⁺		Lu(OH) ₃		← Lu(OH) ₄ ⁻

24) $\zeta = La(OH)^{2+}$ 25) $\eta = Ce_3(OH)_5^{4+}$ 26) $\theta = Pr(OH)^{2+}$ 27) $\iota = Er(OH)_4^{-}$ 28) $\kappa = Tm(OH)_4^{-}$

attinoidi		0 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	pН
Th ^{IV} 0,1 M			Th ⁴⁺		Th	4(OH)) ₁₂ ⁴⁺				Th	(OH) ₄					
$Th^{IV} \ 10^{-3} M$			Th	4+		←	Th ₄ (C	$(200)_{12}^{4+}$			Th(OI	H) ₄					
U ^{IV} 0,1 M	29	U^4	+	λ	U6(OH)15	9+ 5	U(OH) ₄				U(OH)5				
$U^{IV} 10^{-3} M$		U^4	+	U	(OH) ₂	2+		←– U(OH)4								
U ^{VI} 0,1 M			U	O_2^{2+}		←	(UO_2)	$_{2}(OH)_{2}^{2}$	F		UO ₂ (OI	H) ₂		UO	2(OH)3	- μ	
$U^{VI} 10^{-3} M$	30			UO_{2}^{2+}			ν		UO	2(OH)2			UO	2(OH)3	_	μ	

29) $\lambda = U(OH)_2^{2+}$ 30) $\mu = UO_2(OH)_4^{2-}; \nu = UO_2(OH)^+$

ELENCO DELLE SPECIE CHIMICHE CONSIDERATE PER GLI SCHEMI PRECEDENTI

Gruppo	Elemento	Specie in soluzione	Specie pure solide liquide o gassose
	Li ^I	Li ⁺ Li(OH)	Li(OH)
	Na ^I	Na ⁺ Na(OH)	Na(OH)
1	K	K ⁺ K(OH)	K(OH)
	Rb ^I	Rb^+ $Rb(OH)$	Rb(OH)
	Cs ^I	Cs^+ $Cs(OH)$	Cs(OH)
	Be ^{II}	$Be^{2^+} Be(OH)^+ Be(OH)_2 Be(OH)_3^- Be(OH)_4^{2^-} Be_2(OH)^{3^+} Be_2(OH)_2^{2^+} Be_3(OH)_3^{3^+}$	Be(OH) ₂
	Mg ^{II}	Mg^{2+} $Mg(OH)^{+}$ $Mg(OH)_2$	Mg(OH) ₂
2	Ca ^{II}	Ca^{2+} $Ca(OH)^+$	Ca(OH) ₂
	Sr ^{II}	Sr^{2+} $\mathrm{Sr(OH)}^+$	Sr(OH) ₂
	Ba ^{II}	$Ba^{2+} Ba(OH)^+$	Ba(OH) ₂
	B ^{III}	$H_{3}BO_{3} B(OH)_{4} B_{3}O_{3}(OH)_{4} B_{3}O_{4}(OH)_{3}^{2-} H_{2}B_{4}O_{7} HB_{4}O_{7} B_{4}O_{7}^{2-}$	H ₃ BO ₃
	Al ^{III}	$Al^{3+} Al(OH)^{2+} Al(OH)_{2}^{+} Al(OH)_{3} Al(OH)_{4}^{-} Al_{2}(OH)_{2}^{4+} Al_{3}(OH)_{4}^{5+}$	Al(OH) ₃
13	Ga ^{III}	Ga^{3+} $Ga(OH)^{2+}$ $Ga(OH)_2^+$ $Ga(OH)_3$ $Ga(OH)_4^ Ga(OH)_5^{2-}$ $Ga(OH)_6^{3-}$	Ga(OH) ₃
10	In ^{III}	$In^{3+} In(OH)^{2+} In(OH)_2^+ In(OH)_3 In(OH)_4^- In_3(OH)_4^{5+}$	In(OH) ₃
	Tl	TI ⁺ TI(OH)	Tl(OH)
	Tl ^m	Tl^{3+} $Tl(OH)^{2+}$ $Tl(OH)_2^+$ $Tl(OH)_3$ $Tl(OH)_4^-$	Tl(OH) ₃
	C ^{IV-}	CO_2 H ₂ CO_3 HCO ₃ ⁻ CO ₃ ²⁻	CO_2
	Si ^{IV}	$H_4SiO4 H_3SiO_4^- H_2SiO_4^{2-} HSiO_4^{3-}$	SiO ₂
	Ge ^{IV}	$H_4GeO4 H_3GeO_4^- H_2GeO_4^{2^-} [Ge(OH)_4]_8(OH)_3^{3^-}$	GeO ₂
14	Sn ^{II}	Sn^{2+} $Sn(OH)^+$ $Sn(OH)_2$ $Sn(OH)_3^ Sn_2(OH)_2^{2+}$ $Sn_3(OH)_4^{2+}$	Sn(OH) ₂
	Sn ^{IV}	Sn^{4+} $\operatorname{Sn}(OH)_6^{2-}$	SnO ₂
	Pb ^{II}	$\frac{Pb^{2+} Pb(OH)^{+} Pb(OH)_{2} Pb(OH)_{3}^{-} Pb(OH)_{4}^{2-} Pb_{2}(OH)^{3+} Pb_{3}(OH)_{4}^{2+} Pb_{4}(OH)_{4}^{4+}}{Pb^{4}(OH)_{4}^{4+} Pb^{4}(OH)_{4}^{4+} Pb^{$	Pb(OH) ₂
	Pb ^{rv}	$Pb^{4+} Pb(OH)_6^2$	PbO ₂
	N ^{-m}	$NH_4^+ NH_3 NH_2^-$	NH ₃
	N ⁻¹¹	$N_2H_6^2$ N_2H_5 N_2H_4	N_2H_4
		NH ₃ OH NH ₂ OH	NH ₂ OH
	N ^m	HNO ₂ NO ₂	W IG
	N'	HNO ₃ NO ₃	HNO ₃
		H_3PO_2 H_2PO_2	H_3PO_2
15	P ^{III}	$H_3PO_3 H_2PO_3 HPO_3^-$	H ₃ PO ₃
	P A a ^{III}	$\frac{H_{3}PO_{4}}{H_{2}PO_{4}} + \frac{H_{2}O_{4}}{H_{2}O_{4}} + \frac{H_{4}O_{4}}{PO_{4}} + \frac{H_{4}P_{2}O_{7}}{H_{3}P_{2}O_{7}} + \frac{H_{2}P_{2}O_{7}}{H_{2}P_{2}O_{7}} + \frac{H_{2}O_{7}}{P_{2}O_{7}} + \frac{H_{2}O_{$	H_3PO_4 $H_4P_2O_7$
	As As ^V	H_3ASO_3 H_2ASO_3 $HASO_3$ ASO_3^-	As_2O_3
	AS Sh ^{III}	H_3ASO_4 H_2ASO_4 $HASO_4$ ASO_4 $Sh(OII)^{2+}$ $Sh(OII)^+$ $Sh(OII)^ Sh(OII)^ Sh(OII)^{4+}$	As_2O_5
	Sb ^V	$Sb(OH) = Sb(OH)_2 = Sb(OH)_3 = Sb(OH)_4 = Sb_2(OH)_2$	Sb ₂ O ₃
	50	B_{1}^{3+} Bi(OH) ²⁺ Bi(OH) ⁺ Bi(OH), Bi(OH) ⁻ Bi(OH) ⁻ Bi(OH) ⁻⁶⁺ Bi(OH) ⁻⁷⁺ Bi(OH) ⁻⁶⁺	30205
	Bi ^m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bi ₂ O ₃
	O ⁻¹	H_2O_2 HO_2^-	H_2O_2
	S ^{-II}	H_2S $HS^ S^{2-}$	H_2S
	S ^{IV}	$SO_2 H_2SO_3 HSO_3^- SO_3^{2-} S_2O_5^{2-}$	SO_2
	S ^{VI}	H_2SO_4 $HSO_4^ SO_4^{2-}$	H_2SO_4
16	Se ^{-II}	H_2Se $HSe^ Se^{2-}$	H ₂ Se
	Se ^{rv}	H_2SeO_3 $HSeO_3^ SeO_3^{2-}$	SeO ₂
	Se ^{vi}	H_2SeO_4 $HSeO_4$ SeO_4^2	H ₂ SeO ₄
	Te ⁿ	H_2 Te HTe Te^2	H ₂ Te
	Te	H_6TeO_6 H_5TeO_6 $H_4TeO_6^2$ $H_3TeO_6^3$	TeO ₃

	F^{-I}	HF F	HF
	Cl ^{-I}	HCI CI	HCl
	Cl ^I	HCIO CIO	
	Cl ^{III}	HClO ₂ ClO ₂	
	Cl ^V	HClO ₃ ClO ₃	
	Cl ^{VII}	HClO ₄ ClO ₄	
1.5	Br ^{-I}	HBr Br	HBr
17	Br ^I	HBrO BrO	
1	Br ^V	HBrO ₃ BrO ₃	
	Br ^{VII}	$HBrO_4 BrO_4^-$	
	I ^{-I}	HI I	HI
	I	H ₂ IO ⁺ HIO IO ⁻	
	IV	HIO ₃ IO ₃	
	I ^{VII}	$H_6IO_6^+$ H_5IO_6 $IO_4^ H_4IO_6^ H_3IO_6^{2-}$ $H_2IO_6^{3-}$ $H_2I_2O_{10}^{4-}$	
18	Xe ^{VI}	XeO_3 $HXeO_4^ XeO_4^{2-}$	
	Xe ^{VIII}	$H_4 XeO_6 H_3 XeO_6^- H_2 XeO_6^{2-} H XeO_6^{3-}$	
	Sc ^{III}	Sc^{3+} $Sc(OH)^{2+}$ $Sc(OH)_{2}^{+}$ $Sc(OH)_{2}^{+}$ $Sc(OH)_{4}^{-}$ $Sc_{2}(OH)_{4}^{4+}$ $Sc_{2}(OH)_{4}^{5+}$ $Sc_{2}(OH)_{5}^{4+}$	Sc(OH) ₃
3	Y ^{III}	Y^{3+} $Y(OH)^{2+}$ $Y(OH)_2^+$ $Y(OH)_2^+$ $Y(OH)_4^ Y_2(OH)_4^{4+}$ $Y_2(OH)_5^{4+}$	Y(OH) ₃
4	Ti ^{IV}	$Ti(OH)_{2^{+}}^{2^{+}} Ti(OH)_{2}^{+}$	TiO(OH)
	V ^{III}	$V_{3}^{3+} V(OH)_{2}^{2+} V(OH)_{2}^{+} V(OH)_{2} V_{2}(OH)_{2}^{4+} V_{2}(OH)_{2}^{3+}$	V(OH) ₂
	VIV	VO^{2+} $VO(OH)^+$ $VO(OH)_2$ $(VO)_2(OH)_2^{2+}$ $HV_2O_2^{-}$	$V(OH)_2$
5	, v	$VO^{+} H_2VO_4 H_2VO_7 H_2O_7^{-} VO_7^{-} H_2VO_7^{-} V_2O_7^{+} V_2O_7^{+} H_2V_2O_7^{+}$	VO(OII)2
Ū	V ^v	$\frac{1}{1000} = \frac{1}{1000} = 1$	V_2O_5
	Nb ^V	$Nb(OH)_4^+$ $HNbO_3$ NbO_3^-	Nb ₂ O ₅
	Cr ^{III}	Cr^{3+} $Cr(OH)^{2+}$ $Cr(OH)_2^+$ $Cr(OH)_3$ $Cr(OH)_4^ Cr_2(OH)_2^{4+}$ $Cr_3(OH)_4^{5+}$ $Cr_4(OH)_4^{8+}$	Cr(OH) ₃
	Cr ^{VI}	$H_2CrO_4 HCrO_4 - CrO_4^2 - HCr_2O_7 - Cr_2O_7^2$	CrO ₃
6	Mo ^{VI}	$H_2MoO_4 HMoO_4 MoO_4^- MoO_4^{2-} H_2Mo_7O_{24}^{4-} HMo_7O_{24}^{5-} Mo_7O_{24}^{6-}$	MoO ₃
	W ^{VI}	H_2WO_4 $HWO_4^ WO_4^{2-}$	WO ₃ ·H ₂ O
	Mull	Mn^{2+} Mn(OH) ⁺ Mn(OH) ₂ Mn(OH) ₃ Mn(OH) ₄ ²⁻ Mn ₂ (OH) ³⁺ Mn ₂ (OH) ₃ ⁺	
	Mn	Mn ₃ (OH) ₃ ³⁺	$Mn(OH)_2$
7	Mn ^{VII}	HMnO ₄ MnO ₄	
/	Tc ^{IV}	$TcO(OH)^+$ $TcO(OH)_2$ $TcO(OH)_3^-$	TcO ₂
	Te ^{VII}	$HTcO_4$ TcO_4^-	
	Re ^{VII}	HReO ₄ ReO ₄	
8	$ \begin{array}{c} - c_1^{Hi} HClo_2 Clo_2^{-1} \\ - c_1^{Vi} HClo_3 Clo_1^{-1} \\ - c_1^{Vi} HBrO_3 BrO_1^{-1} \\ - c_1^{Vi} HBrO_3 BrO_1^{-1} \\ - c_1^{Vi} HBrO_3 BrO_1^{-1} \\ - c_1^{Vi} HBrO_4 BrO_4^{-1} \\ - c_1^{Vi} HI \cap Ci \\ - c_1^{Vi} HI \cap Ci \\ - c_1^{Vi} HI \cap Ci \\ - c_1^{Vi} HI_3 \\ - c_2 HXeO_5 XeO_7^{-2} \\ - Xe^{Vi} XeO_4 XEO_6^{-1} H_2 \\ - Ce_5 HXeO_6 XeO_7^{-2} \\ - Xe^{Vii} H_4 \\ - XeO_4 XEO_6 - XeO_7^{-2} \\ - Xe^{Vii} H_4 \\ - XeO_4 H_3 \\ - XeO_7 XeO_7 \\ - XeO_7 XeO_7 \\ - XeO_7 \\ -$	Fe(OH) ₂	
0	Fe ^{III}	Fe^{3+} $Fe(OH)^{2+}$ $Fe(OH)_2^+$ $Fe(OH)_3$ $Fe(OH)_4^ Fe_2(OH)_2^{4+}$ $Fe_3(OH)_4^{5+}$	Fe(OH) ₃
9	Co ^{II}	Co^{2+} $Co(OH)^{+}$ $Co(OH)_2$ $Co(OH)_3^{-}$ $Co(OH)_4^{2-}$ $Co_2(OH)^{3+}$ $Co_2(OH)_2^{2+}$ $Co_4(OH)_4^{4+}$	Co(OH) ₂
10	Ni ^{II}	$Ni^{2+} Ni(OH)^{+} Ni(OH)_{2} Ni(OH)_{3}^{-} Ni(OH)_{4}^{2-} Ni_{2}(OH)^{3+} Ni_{4}(OH)_{4}^{4+}$	Ni(OH) ₂
10	Pd ^{II}	Pd^{2+} $Pd(OH)^+$ $Pd(OH_{12} Pd(OH_{3}^-)$	Pd(OH) ₂
	Cu ^{II}	Cu^{2+} $Cu(OH)^{+}$ $Cu(OH)_2$ $Cu(OH)_3^{-}$ $Cu(OH)_4^{2-}$ $Cu_2(OH)_2^{2+}$	Cu(OH) ₂
11	Ag ^I	Ag^+ $Ag(OH)$ $Ag(OH)_2^ Ag(OH)_3^{2-}$ $Ag_2(OH)^+$	Ag(OH)
	Au ^{III}	Au^{3+} H_3AuO_3 $H_2AuO_3^ HAuO_3^{2-}$	Au(OH) ₃
	Zn ^{II}	Zn^{2+} $Zn(OH)^{+}$ $Zn(OH)_{2}$ $Zn(OH)_{3}^{-}$ $Zn(OH)_{4}^{2-}$ $Zn_{2}(OH)^{3+}$ $Zn_{2}(OH)_{6}^{2-}$	Zn(OH) ₂
12	Cd ^{II}	$\begin{bmatrix} Cd^{2+} & Cd(OH)^{+} & Cd(OH)_{2} & Cd(OH)_{3}^{-} & Cd(OH)_{4}^{2-} & Cd(OH)_{5}^{3-} & Cd(OH)_{6}^{4-} & Cd_{2}(OH)^{3+} \\ Cd_{2}(OH)^{4+} & Cd_{3}(OH)_{4}^{4+} & Cd_{3}(OH)_{4}^{2-} & Cd(OH)_{5}^{3-} & Cd(OH)_{6}^{4-} & Cd_{2}(OH)^{3+} \\ \end{bmatrix}$	Cd(OH) ₂
		Cu ₄ (OH) ₄	

l n t a n o i d i i	La ^{III}	$La^{3+} La(OH)^{2+} La(OH)_2^+ La(OH)_3 La(OH)_4^- La_2(OH)^{5+} La_5(OH)_9^{6+}$	La(OH) ₃
	Ce ^{III}	Ce^{3+} $Ce(OH)^{2+}$ $Ce(OH)_2^+$ $Ce(OH)_3$ $Ce(OH)_4^ Ce_3(OH)_5^{4+}$	Ce(OH) ₃
	Pr ^{III}	$Pr^{3+} Pr(OH)^{2+} Pr(OH)_{2}^{+} Pr(OH)_{3} Pr(OH)_{4}^{-}$	Pr(OH) ₃
	Nd ^{III}	$Nd^{3+} Nd(OH)^{2+} Nd(OH)_{2}^{+} Nd(OH)_{3} Nd(OH)_{4}^{-} Nd_{2}(OH)_{2}^{4+}$	Nd(OH) ₃
	Sa ^{III}	$Sa^{3+} Sa(OH)^{2+} Sa(OH)_2^+ Sa(OH)_3 Sa(OH)_4^- Sm_2(OH)_2^{4+}$	Sa(OH) ₃
	Eu^{III}	Eu^{3+} $Eu(OH)^{2+}$ $Eu(OH)_2^+$ $Eu(OH)_3$ $Eu(OH)_4^-$	Eu(OH) ₃
	Gd^{III}	Gd^{3+} $Gd(OH)^{2+}$ $Gd(OH)_2^+$ $Gd(OH)_3$ $Gd(OH)_4^ Gd_2(OH)_2^{4+}$	Gd(OH) ₃
	Tb ^{III}	Tb^{3+} $Tb(OH^+)^2$ $Tb(OH)_2^+$ $Tb(OH)_3$ $Tb(OH)_4^-$	Tb(OH) ₃
	$\mathrm{Dy}^{\mathrm{III}}$	Dy^{3+} $Dy(OH)^{2+}$ $Dy(OH)_{2}^{+}$ $Dy(OH)_{3}$ $Dy(OH)_{4}^{-}$	Dy(OH) ₃
	Ho ^{III}	Ho^{3+} $\text{Ho}(\text{OH})^{2+}$ $\text{Ho}(\text{OH})_2^+$ $\text{Ho}(\text{OH})_3$ $\text{Ho}(\text{OH})_4^-$	Ho(OH) ₃
	$\mathrm{Er}^{\mathrm{III}}$	Er^{3+} $\text{Er}(\text{OH})^{2+}$ $\text{Er}(\text{OH})_2^+$ $\text{Er}(\text{OH})_3$ $\text{Er}(\text{OH})_4^ \text{Er}_2(\text{OH})_2^{4+}$	Er(OH) ₃
	Tm ^{III}	$Tm^{3+} Tm(OH)^{2+} Tm(OH)_2^+ Tm(OH)_3 Tm(OH)_4^-$	Tm(OH) ₃
	Yb ^{III}	Yb^{3+} $Yb(OH)^{2+}$ $Yb(OH)_2^+$ $Yb(OH)_3$ $Yb(OH)_4^-$	Yb(OH) ₃
a t 1 n 0 1 d 1	Th ^{IV}	$\frac{\text{Th}^{4+} \text{Th}(\text{OH})^{3+} \text{Th}(\text{OH})_2^{2+} \text{Th}(\text{OH})_3^{+} \text{Th}(\text{OH})_4 \text{Th}_2(\text{OH})_7^{+} \text{Th}_2(\text{OH})_2^{6+} \text{Th}_2(\text{OH})_3^{5+}}{\text{Th}_4(\text{OH})_{12}^{4+} \text{Th}_6(\text{OH})_{14}^{10+} \text{Th}_6(\text{OH})_{15}^{9+}}$	Th(OH) ₄
	U^{IV}	$U^{4+} U(OH)_2^{2+} U(OH)_3^+ U(OH)_4 U(OH)_5^- U_6(OH)_{15}^{9+}$	U(OH) ₄
	U^{VI}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UO ₂ (OH) ₂